Six Sigma Metrics, Confusion and Resolution

Forrest W. Breyfogle III

Smarter Solutions, Inc. Austin, Texas www.smartersolutions.com

References

- ▲ Implementing Six Sigma, Forrest W. Breyfogle III, Wiley, 1999
- *Managing Six Sigma*, Forrest W. Breyfogle III, James M. Cupello, Becki Meadows, Wiley, 2001
- "Bottom-Line Success with Six Sigma," Forrest W. Breyfogle III and Becki Meadows, *Quality Progress,* May 2001

Overview

- The metrics of Six Sigma can be useful or they can be deceiving
 - For example, equations to determine process capability indices are basically very simple; however, these equations are very sensitive to the standard deviation input
- This presentation address the confusion and deception that often accompanies Six Sigma process capability metrics, along with a strategy that can improve the communication of process capability issues.

Usage

- Process capability/performance studies assess a process relative to specification criteria
 - Statisticians often challenge how well commonly used capability indices do this
 - Customers often request these indices when communicating with their suppliers
 - Customers also might set process capability/performance targets and then ask its suppliers for to meet these targets

Mathematical Relationships

 \checkmark Process capability indices C_p and C_{pk} can be expressed as

$$C_{p} = \frac{\text{USL} - \text{LSL}}{6\sigma} \qquad \qquad C_{pk} = \min\left[\frac{\text{USL} - \mu}{3\sigma}, \frac{\mu - \text{LSL}}{3\sigma}\right]$$

Mathematical Relationships

C_p compares the spread of our data to the width of the specification limits

Mathematical Relationships

 C_{pk} calculations are made relative to closest specification limit (LSL line shifted left)

Determining Standard Deviation

Title: chapter - 7

Definitions

AIAG Definitions

- Process Capability: The 6σ range of a process' inherent variation, for statistically stable processes only
 - where σ is usually estimated by R-bar/d₂
 - C_p: This is the capability index which is defined as the tolerance width divided by the Process Capability, irrespective of process centering
 - *C_{pk}*: This is the capability index which accounts for process centering
 - It relates the scaled distance between the process mean and the closest specification limit to half the total process spread

Definitions

AIAG Definitions

Process Performance: The 6σ range of a process' total variation,
where σ is usually estimated by s, the sample standard deviation

- *P_p*: This is the performance index which is defined as the tolerance width divided by the process performance, irrespective of process centering
 - Typically, this is expressed as the tolerance width divided by six times the sample standard deviation
 - > It should only be used to compare to or with C_{ρ} and $C_{\rho k}$ and to measure and prioritize improvement over time
- *P_{pk}*: This is the performance index which accounts for process centering
 - > It should only be used to compare to or with C_p and C_{pk} and to measure and prioritize improvement over time

Determining Standard Deviation

Reported Process Capability Indices

- Not all statistical software programs will give the same answer for process capability calculations
 - Minitab calculations for process capability depend upon the order the data is entered
- ▲ The equations described are for normally distributed data
 - Computer programs can often address situations where data are not from a normal distribution; however, this is often not done in practice
- Sample size and confidence intervals are not typically addressed.

Alternative Approach

- Since most people try to visualize the ppm rate impact from any reported process capability index,
 - we suggest reporting only a long-term ppm rate directly using transformations as needed
- We also do not recommend converting ppm rates to Sigma Quality Levels

