
Consider the view from an airplane. When the airplane is at an elevation of 
30,000 feet, passengers can see a big-picture view of the landscape from 
a window. When the airplane is at 50 feet during landing, passengers 

view a much smaller, more detailed portion of the landscape. Similarly, in the 
relationship Y = f(X), a 30,000-foot-level statistical control chart could be used 
to provide a macro view of how a key process output variable, or Y, is perform-
ing over time. Meanwhile, a 50-foot-level control chart could give a time-series 
micro view of a key process input variable. 

Statistical control charts are typically used to identify in a timely fashion, as 
a control mechanism, special cause conditions at a low level, or a 50-foot level. 
An example of this form of control would be to identify when temperature 
(an important X to a process) significantly changes so that the process can be 
adjusted before a large amount of unsatisfactory product is produced.

In contrast, the 30,000-foot-level approach uses infrequent subgrouping or 
sampling to capture from a high level how a process is performing relative to 
overall customer needs. A sampling frequency that is long enough to span all 
short-term process noise inputs—such as between-day differences from raw 
material lots and personnel or machine differences—provides a high-level 
perspective that is often predictive. With this process-tracking and reporting 
approach, when an expected future performance statement for a process is 
undesirable, the improvement metric is “pulling” for a process improvement 
effort to change either the process’s steps or its inputs so the process output 
transitions to an enhanced level of performance. 

Approaches to control charting

In the second half of the 1920s, Walter A. Shewhart of Bell Telephone 
Laboratories developed a theory of statistical quality control in which he con-
cluded there were two components to variations displayed in all manufacturing 
processes.1, 2 

The first component was a steady component—random variation that 
appeared to be inherent in the process. The second component was an inter-
mittent variation to assignable causes. He concluded assignable causes could be 
economically discovered and removed with an effective diagnostic program, but 
random causes could not be removed without making basic process changes.

Shewhart is credited with developing the standard control chart test based on 
three standard deviation limits to separate the steady component of variation 
from assignable causes, in which calculated control chart upper control limits 
(UCL) and lower control limits (LCL) are a function of process variability and 
are independent of specification limits. Shewhart control charts came into wide 
use in the 1940s because of war production efforts. Western Electric is credited 
with the addition of other tests based on sequences or runs.3
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In his book Out of the Crisis, W. Edwards Deming 
wrote: “A fault in the interpretation of observations, 
seen everywhere, is to suppose that every event (defect, 
mistake, accident) is attributable to someone (usually 
the one nearest at hand), or is related to some special 
event. The fact is that most troubles with service and 
production lie in the system.”

“We shall speak of faults of the system as common 
causes of trouble, and faults from fleeting events as 
special causes,” he wrote. “Confusion between common 
causes and special causes leads to frustration of every-
one, and leads to greater variability and higher costs, 
exactly contrary to what is needed. I should estimate 
that in my experience most troubles and most possibili-
ties for improvement add up to proportions something 
like this: 94% belong to the system (responsibility of 
management), 6% special.”4

Control charts offer the study of variation and its 
source over time. Control charts are used to not only 
monitor and control, but also identify improvement 
opportunities. But there is more than one way to use 
control charts for process-response enhancement.  

To illustrate this point, consider the following 
approaches:

•  Shewhart: Control charts can identify assignable 
causes that could be internal or external to the 
system. 

•  Deming: Control charts can separate a process’s 
special causes from common causes. Special 
causes originate from fleeting events experienced 
by the system and common causes originate from 
the natural variation of the process that is internal 
and external to the system. 

 The traditional Shewhart control charting approach 
emphasizes identification and resolution of assignable 
causes. This can be beneficial to process performance 
when it is important to chart the process input so it does 
not drift or have an unusually low or high response, 
which could affect the overall output of the process. 
Using this traditional approach, special causes must 
be identified early so issues can be resolved in a timely 
fashion, before many poor-quality parts or transactions 
are produced. However, there can be issues with these 
charts when attempting to use the Shewhart control 
chart approach to track the output of a process. More 
on this point will be elaborated upon later in this article.

Calculating capability and performance indexes

Process capability and performance studies often 
use indexes to describe how a process is performing 

relative to specification criteria. A customer might set 
process capability and process performance indexes 
targets, and then ask suppliers to report on how well 
they meet these targets.

The Automotive Industry Action Group (AIAG)5 
provides the following definitions:

•  Cp: The capability index, defined as the tolerance 
width divided by the process capability, irrespec-
tive of process centering.

•  Cpk: The capability index that accounts for process 
centering. It relates the scaled distance between 
the process mean and the closest specification 
limit to half the total process spread. 

•  Pp: The performance index, defined as the toler-
ance width divided by the process performance, 
irrespective of process centering. Typically, it is 
expressed as the tolerance width divided by six 
times the sample standard deviation. It should be 
used only to compare to Cp and Cpk and to mea-
sure and prioritize improvement over time.

•  Ppk: This is the performance index, which 
accounts for process centering. It should be used 
only to compare to Cp and Cpk and to measure and 
prioritize improvement over time.

These definitions are not followed by all organiza-
tions. Some organizations interpret process capability 
as how well a product performs relative to customer 
needs (or specification). This interpretation is closer 
to the definition given earlier for process performance. 
Organizations may require or assume that processes 
are in control before conducting process capability 
and performance assessments. Other organizations 
lump all data together, resulting in special-cause data 
increasing the value for long-term variability; how-
ever, a process should be considered stable before any 
process capability or performance statement is made. 
The term “process performance” is not always used to 
describe Pp and Ppk.

The equations for process capability and perfor-
mance indexes are quite simple but sensitive to the 
input value for standard deviation (σ). There are vari-
ous opinions on how to determine standard deviation 
in a given situation. AIAG6 provides guidance on how 
to calculate this standard deviation term from an x̄̄   and 
R control chart through use of the following defini-
tions: 

Inherent process variation: The portion of process 
variation due to common causes only. This variation 
can be estimated from an x̄̄  and R control chart by 
dividing the average range of the control chart R

–
 by 

d2, which is a constant that depends on the number 
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of samples in the subgroup. R
–
/d2 is shown in Table 

1.  
Total process variation: Process variation due to 

common and special causes. This variation may be 
estimated by s, the sample standard deviation, using all 
the individual readings obtained from either a detailed 
control chart or a process study; that is:
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n
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in which xi is an individual reading, x̄̄  is the average 
of individual readings and n is the total number of all 
of the individual readings. 

Process capability: The 6σ range of a process’s 
inherent variation; for statistically stable processes 
only, where σ is usually estimated by  R

–
/d2.

Process performance: The 6σ range of a process’s 
total variation, in which σ is usually estimated by s, the 
sample standard deviation.

The process capability index Cp represents the allow-
able tolerance interval spread in relation to the actual 
spread of the data when the data follow a normal 
distribution. This equation is:

  

in which USL and LSL are the upper specification 
limit and lower specification limit, respectively, and 
6σ describes the range or spread of the process. Data 
centering is not taken into account in this equation. 
Other options to determine (σ) are determined later 
in this article. 

Cp addresses only the spread of the process, while Cpk 
is used concurrently to consider the spread and mean 
shift of the process. Mathematically, Cpk can be rep-
resented as the minimum value of the two quantities

     .  

An often recommended minimum acceptable pro-
cess capability index7 is 1.33 (4σ); however, Six Sigma 
programs have suggested striving to obtain a minimum 
individual process step Cp value of 2 and a Cpk value 
of 1.5.8

Process capability and performance indexes Pp and 
Ppk are sometimes referred to as long-term capabil-
ity and performance indexes. Not all organizations 
report information as Pp and Ppk. Some organizations 
calculate Cp and Cpk so they report information that is 
similar to Pp and Ppk. 

The mathematical calculation of Pp and Ppk is similar 
to that of Cp and Cpk. For a given situation, the only 

quantitative difference is the value used for standard 
deviation.

Confusion with indexes

Practitioners must be careful about the methods they 
use to calculate and report process capability and per-
formance indexes.9 Customers might be asking for 
Cp and Cpk metrics when the documentation really 
stipulated the use of a long-term estimate for standard 
deviation. The supplier might not understand this and 
initially operate under the assumption that Cp and Cpk 
measure short-term variability. A misunderstanding 
of this type between customer and supplier could be 
costly. 

Another possible source of confusion is the statistical 
computer program package used to calculate these 
indexes. Consider an instance in which a supplier 
entered randomly collected data into a computer pro-
gram, thinking the usual sampling standard deviation 
formula would be the source of the standard devia-
tion value used in the capability computations. The 
computer program presumed by default that the data 
were collected sequentially. The computer program 
estimated a short-term standard deviation by calculat-
ing the average moving range of the sequential entries 
and converting this moving range value to a standard 
deviation. 

The computer program listed the response as Cp 
and Cpk. The practitioner thought that he or she had 
used the program correctly because the output (Cp 
and Cpk) was consistent with the customer’s request. 
However, the data were not generated in sequence. If 
the same data were reentered in a different sequence, 
a different Cp and Cpk metric would probably result. 
For non-sequentially generated data, the practitioner 
should limit calculations to options of this program 
that lead to a Pp and Ppk type computation. The under-
lying assumption with this approach is that the data 
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Subgroup size A2 c4 d2

2 1.880 0.7979 1.128

3 1.023 0.8862 1.693

4 0.729 0.9213 2.059

5 0.577 0.9400 2.326

6 0.483 0.9515 2.534

Table 1. Factors for constructing 
variables control charts 



are collected randomly over a long period of time and 
accurately describe the population of interest. 

Process capability and performance index metrics 
require good communication and agreement on the 
techniques used for calculation. These agreements also 
should include sample size and measurement consider-
ations. You can avoid many of these issues by reporting 
in process capability and performance noncompliance 
rate units, not Cp, Cpk, Pp and Ppk indexes. 

A great deal of confusion and difference of opinion 
exists related to short term and long-term variability. 
Consider the basic differences, which can be grouped 
under two main categories.

Opinion one. Process capability describes the capa-
bility or the best a process could currently be expected 
to work. It does not address directly how well a pro-
cess is running relative to the needs of the customer. 
Rather, it considers short-term variability. A long-term 
variability assessment attempts to address directly how 
well the process is performing relative to customer 
needs. Special causes, which have the most impact on 
long-term variability estimates from a control chart, 
might be included in the analyses. Some might object 
that predictions couldn’t be made without process 
stability. Processes can appear to be out of control 
from day-to-day variability effects such as raw material, 
which, they would argue, is common cause variability. 

Standard deviation input-to-process capability and 
process performance equations can originate from 
short term or long-term considerations. In determining 
process capability indexes from x̄̄  and R control chart 
data, the standard deviation within subgroups is said 
to give an estimate of the short-term variability of the 
process, while the standard deviation of all the data 
combined is said to give an estimate of its long-term 
variability.

In a manufacturing process, short-term variability 
typically does not include, for example, raw material 
lot-to-lot variability and operator-to-operator variability. 
Within a business process, short-term variability might 
not include day-to-day variability or department-to-
department variability. Depending on the situation, 
these long-term variability sources might be considered 
special causes and not common causes.

Process capability indexes Cp and Cpk typically assess 
the potential short-term capability by using a short-
term standard deviation estimate, while Pp and Ppk 
typically assess overall long-term capability by using 
a long-term standard deviation estimate. Sometimes, 
the relationship Pp and Ppk is referred to as process 
performance. 

Some organizations require or assume that processes 
are in control before conducting process capability and 
performance index assessments. Other organizations 

lump all data together, which results in special-cause 
data increasing the estimates of long-term variability. 
These organizations might try to restrict the applica-
tion of control charts to monitoring process inputs.

Opinion two. Process capability describes how well 
a process is executing relative to the needs of the cus-
tomer. The terms “short term” and “long term” are 
not typically considered separately as part of a process 
capability assessment. 

The quantification for the standard deviation term 
within process capability calculations describes the 
overall variability of a process. When determining 
process capability indexes from x̄̄  and R control chart 
data, an overall standard deviation estimate would be 
used in the process capability equations. Calculation 
procedures for standard deviations differ from one 
practitioner to another, ranging from combining all 
data together to determining total standard deviation 
from a variance components model.

This opinion takes a more long-term view of variabil-
ity. It involves a different view of factors in an in-control 
process. In manufacturing, raw material lot-to-lot vari-
ability and operator-to-operator variability are more 
likely considered common causes. In a business pro-
cess, day-to-day variability or department-to-department 
variability are more likely considered common causes. 

Process capability indexes Cp and Cpk typically address 
the needs of customers and have a total standard devia-
tion estimate within the calculations. Pp and Ppk are not 
typically used as a metric in this approach.

Calculating standard deviation

Confusion can also often be encountered with regard 
to the calculation of the seemingly simple standard 
deviation statistic.10 Though standard deviation is an 
integral part of the calculation of process capability, 
the method used to calculate it is rarely adequately 
scrutinized. In some cases, it is impossible to get a 
specific desired result if data are not collected in the 
appropriate fashion. Consider the following three 
sources of continuous data: 

1. Situation A: an x̄̄  and R control chart with sub-
groups with a sample size of five.

2. Situation B: an X chart with individual measure-
ments.

3. Situation C: a random sample of measurements 
from a population.

All three are real possible sources of information, 
but no one method is correct for obtaining an estimate 
of standard deviation σ in all three scenarios. Author 
Thomas Pyzdek11 presents five methods of calculat-
ing standard deviation. Figure 1 (p. 23) illustrates six 
approaches to make this calculation. 
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Method one: long-term estimate of σ

One approach for calculating the standard deviation 
of a sample (s) is to use the formula:

 

in which x̄̄  is the average of all data, xi are the data 
values and n is the overall sample size. 

Sometimes, computer programs apply an unbiasing 
term to this estimate, dividing the above by c4(n - 1).12 
Tabulated values for c4 at n - 1 are shown in Table 1. 

1. Situation A: When data come from an x̄̄  and 
R chart, this traditional estimate of standard 
deviation is only valid when a process is stable, 
though some use this method even when pro-
cesses are not stable. Shewhart showed that this 
method overestimates scatter if the process is 
influenced by a special cause. This estimate 
should never be used to calculate control limits. 
Control limits are calculated using sampling 
distributions. 

2. Situation B: When data are from an individuals 
control chart, this approach can give an esti-
mate of process variability from the customer’s 
point of view.

3. Situation C: For a random sample of data from 
a population, this is the only method that 
makes sense because the methods that follow all 
require the sequence of part creation. 

Method two: short-term estimate of σ

A standard method for estimating standard deviation 
from x̄̄  and R control chart data is:

 

in which R
–
 is the average of the subgroup range 

values from a control chart and d2 is a value from Table 
1 that depends on subgroup sample size.

1. Situation A: When data come from an x̄̄  and R 
chart, the problem of the standard deviation 
being inflated by special causes is alleviated 
because it does not include variation between 
time periods. Shewhart proposed using a ratio-
nal subgroup to achieve this, in which the 
subgroup sample is chosen so that the oppor-
tunity for special causes is minimized. Often, 
this is accomplished by selecting consecutively 
produced units from a process. The method of 

analysis is inefficient when range is used to esti-
mate standard deviation because only two data 
values are used from each subgroup. This inef-
ficiency increases as the subgroup size increases. 
Efficiency increases when subgroup standard 
deviation is used.

2. Situation B: When data are from an individuals 
control chart, this calculation is not directly pos-
sible because the calculation of R

–
 for a subgroup 

size of one is not possible. 
3. Situation C: For a random sample of data from 

a population, this calculation is not possible 
because the sequence of unit creation is not 
known.

Method three: short-term estimate of σ

The following equation is derived from the equation 
used to determine the centerline of a control chart 
when the process standard deviation is known:

 

in which s̄  is the average of the subgroup standard 
deviation values from a control chart, and c4 is a value 
from Table 1 that depends on subgroup sample size. 
Subgroup standard deviation values are determined by 
the formula shown in method one. 

1. Situation A: When data are from an x̄̄  and R or 
s chart, the comments relative to this situation 
are similar to the comments in method two. 
Compared to method two, this approach is more 
involved but more efficient.

2. Situation B: When data are from an individuals 
control chart, this calculation is not possible 
because the calculation of s̄  for a subgroup size 
of one is not possible. 

3. Situation C: For a random sample of data from 
a population, this calculation is not possible 
because the sequence of unit creation is not 
known.

Method four: short-term estimate of σ

The following relationship is taken from one of the 
equation options used to determine the centerline of 
an individual control chart:

 

in which a correction factor of 1.047 is multiplied by 
the median of the moving range (Moving R̃ ). 

1. Situation A: When data are from an x̄̄  and R 
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chart, this approach is not directly applicable.
2. Situation B: When data are from an individuals 

control chart, this calculation is an alternative. If 
the individuals control chart values are samples 
from a process, you would expect a higher value 
if there is less variability from consecutively 
created units when compared to the overall 
variability experienced by the process between 
sampling periods of the individuals control 
chart. Research has recently indicated that this 
approach gives good results for a wide variety of 
out-of-control patterns. 

3. Situation C: For a random sample of data from 
a population, this calculation is not possible 
because the sequence of unit creation is not 
known.

Method five: short-term estimate of σ

The following equation derives from one of the equa-
tions used to determine the centerline of an individual 
control chart: 

 

in which MR is the moving range between two con-
secutively produced units and d2 is a value from the 
table of factors for constructing control charts using a 
sample size of two. 

1. Situation A: When data are from an x̄̄  and R 
chart, this approach is not directly applicable.

2. Situation B: When data are from an individuals 
control chart, this calculation is an alternative. 
Most of the method four comments for this situ-
ation are similarly applicable. This is the method 

suggested by AIAG.13 Some practitioners prefer 
method four over method five.14 

3. Situation C: For a random sample of data from 
a population, this calculation is not possible 
because the sequence of unit creation is not 
known.

Method six: short-term estimate of σ

The following relationship is sometimes used by com-
puter programs to pool standard deviations when there 
are m subgroups of sample size n:

in which 

c4(d) is a value that can be determined from Table 
1 and 

 

and

     . 

The purpose of using c4(d) when calculating σ̂ is to 
reduce bias to this estimate. Values for c4 are given in 
Table 1. 

1. Situation A: When data come from an x̄̄  and R 
or s chart, the comments relative to this situation 
are similar to the comments in methods two and 
three. If all groups are to be weighed the same— 
regardless of the number of observations—the s̄  
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(or R
–
) approach is preferred. If the variation is 

to be weighted according to subgroup size, the 
pooled approach is appropriate.

2. Situation B: When data are from an individuals 
control chart, this calculation is not directly pos-
sible because the calculation of R

–
 for subgroup 

size of one is not possible. 
3. Situation C: For a random sample of data from 

a population, this calculation is not possible 
because the sequence of unit creation is not 
known.

The concepts of this variability discussion will now 
be applied to control charting and process capability 
reporting. 

Shewhart vs. Deming

An x̄̄   and R control chart are often the preferred meth-
od for tracking continuous data over time.  Classically, 
it is stated that x̄̄  and R control charting subgroup 
intervals should be selected so that variation among 
the units within a subgroup is small. The thought 
is that if variation within a subgroup represents the 
piece-to-piece variability over a very short period of 
time, any unusual variation between subgroups would 
reflect changes in the process that should be inves-
tigated for appropriate action. With this approach, 
process enhancements are often undertaken through 
the identification and resolution of an assignable cause 
that caused an out-of-control condition.   

This form of control can beneficial. However, orga-
nizations often give focus on the output of a process 
when applying control charts. This type of measure-
ment is not really controlling the process and may not 
offer timely problem identification. To control a pro-
cess, using x̄̄  and R control charts are most beneficial 
when monitoring key process input variables, where 
process flow is stopped for timely resolution when the 
variable goes out of control.  

However, Deming’s description of the terms “special 
cause” and “common cause” variability can lead to a 
different point of view for the construction and use of 
control charts.15, 16 Deming’s description of common 
cause and special cause could be applied to not only a 
process’s input but also the output of a process. 

To illustrate this point, a situation will be examined 
where an x̄̄  and R control chart process was selected 
that has one operator per shift, and batch-to-batch 
raw material changes occur daily. In this illustration, 
consider also that there are some slight operator-to-
operator differences and raw material differences 
from batch to batch, but raw material is always within 

specification limits. 
If a control chart were established in which five 

pieces are taken in a row for each day, the variability 
used to calculate x̄̄  and R control chart limits does not 
consider operator-to-operator and batch-to-batch raw 
material variability. If the variability between opera-
tors and batch to batch is large relative to five pieces 
in a row, the process could often have out-of-control 
signals, where intervention is to investigate and resolve 
an assignable cause. Much frustration can occur in 
manufacturing when time is spent to no avail trying 
to fix a problem over which operators may have little, 
if any, control. 

Let’s examine this situation using the terminology of 
Shewhart and Deming. With Shewhart’s terminology, 
control charts are examined to identify out-of-control 
signals that are the result of assignable causes that are 
to be resolved. Meanwhile, Deming’s point of view 
suggests that a process inherently has common-cause 
variability from internal and external sources, and spe-
cial cause events can cause out-of-control conditions. 

From a Deming point of view, the variability between 
operators and batch to batch in the example could 
be considered sources of common-cause variability. 
With this perspective, operations should not react to 
operator and batch difference as though they were 
special cause, even though they are assignable, using 
Shewhart’s terminology. 

From the Deming perspective, that’s not to say the 
raw material does not cause a problem to the process, 
despite being within its specified tolerance. The point 
is whether the variability between raw material lots 
should be treated as a special cause. It seems that even 
though the raw material lot variability could be classi-
fied as assignable (Shewhart’s terminology), a strong 
argument can be made to treat this type of variability 
as common cause (Deming’s terminology).  

From a Deming perspective, you could conclude 
that control limits then should be created so that raw 
material lot-to-lot variability and differences between 
operations are included in the calculated control lim-
its. This charting approach provides a higher-elevated 
view of the process than traditional control charts. If 
we consider an airplane’s in-flight view of the earth, 
traditional control charts as proposed by Shewhart 
provide a 50-foot elevation view of earth, while a high-
level planet view could be from 30,000 feet.  

Because of this analogy, refer to this high level, time-
series process output reporting as a 30,000-foot level, 
while traditional process input tracking would be at the 
50-foot level. Unlike 50-foot-level control charts, the 
process measurements from a high-level perspective 
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suggests infrequent subgrouping and 
sampling to capture how the process is 
performing relative to overall customer 
needs. The subgrouping frequency 
when creating 30,000-foot-level control 
charts must be long enough to span 
all short-term process noise inputs, 
such as raw material differences and 
between days or daily cycle differences. 

Now examine control chart equation 
options for continuous data to deter-
mine a method for 30,000-foot-level 
time-series reporting. Figure 2 provides 
a visual of the previously described situ-
ation with its overall process’s two com-
ponents of variation—within day and 
between-day variability. Again, what is 
desired is that the magnitude of both 
variation components are involved 
in the control chart upper and lower 
calculated values, if the process were 
tracked through daily subgroupings.  

The traditional approach for track-
ing the previous described situation 
would be an x̄̄  and R control chart 
using the equation: 

in which x= is the overall average of 
the subgroups, A2 is a constant depend-
ing upon subgroup size (see Table 1) and R

–
 is the 

average range within subgroups. This R
–
 includes only 

a σ2
within influence. 

An alternative to tracking multiple samples from 
each subgroup distribution is the selection of only one 
sample per unit of time. For this situation, an individu-
als chart (X chart) or individuals-moving-range chart 
(XmR chart) would be appropriate process tracking 
alternatives. For presentation simplicity, only the X 
chart will be used in the following discussion because 
the addition of a moving-range chart would only add 
the inclusion of data-point-transitions tracking, which 
is included in the individuals chart. Now examine the 
individuals or X chart calculation for the UCL and LCL 
in the following equations:   

In these equations, MR   
    

is the average moving range 
between subgroups, which is added or subtracted from 
the process mean after being adjusted by a multiple of 
three standard deviations divided by a 1.128 d2 constant 
for adjacent subgroups. This MR includes σ2

total influ-
ence.

Which control charting technique is most appro-
priate? It depends on how the source of variability is 
considered relative to common and special causes, as 
previously described. The 30,000-foot-level tracking 
approach considers that variability between subgroups 
should affect the control limits. For this to occur, a 
sampling plan is needed where the impact from this 
type of common-cause noise variable occurs between 
subgroupings. 

From the earlier x̄̄  control charting limits equation, 
it is noted that between subgroups, common-cause 
variability has no impact on calculated control limits. 
Therefore, whenever common-cause variability does 
occur between subgroups, an x̄̄   and R  control chart 
can trigger this occurrence as a special cause. This 
behavior is different with the individuals control chart, 
where control chart limits are a function of the mean 
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    Figure 2. Time series data with calculations for  
    30,000-foot-level control chart creation
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moving range, which is an estimate from between sub-
group variability. The between subgroup needs for 
calculating 30,000-foot-level control charts is achieved 
with individuals control charts and not with x̄̄  and 
R control charting. Because of this, 30,000-foot-level 
reporting will use individuals control charts to deter-
mine if a process’s within subgroup mean and standard 
deviation remains stable over time.  

Deming’s view, Shewhart’s charts  

Time-series data, like that shown in Table 2,17 could 
have been generated from measuring a manufactured 

part’s dimension, response time in a call center, or the 
time it took to complete a transaction. In any case, five 
daily sample responses were documented for a 10-day 
period. The tabular mean and range value calculations 
in the table will be used to determine the upper and 
lower control chart limits.    

A process capability and performance statement is 
desired for this time-series data relative to specification 
limits of 95 to 105. 

The described scenarios where this data could have 
originated would suggest the application of a 30,000-
foot level performance metric chart. However, an x̄̄  
and R control chart would traditionally be used for 
time-series tracking data of this type. For purposes 
of illustration, these two charting differences will be 
compared for this set of data to illustrate how different 
conclusions could be made relative to what should be 
done issues within this process. 

An x̄̄  and R control chart of this data is shown in 
Figure 3, in which the UCL and LCL were determined 
using the following equations. Note: slight differences 
may occur between the computer generated control 
chart limits and calculated values because of the num-
ber of digits that was used for the constant for the 
constants or rounding differences.

Some courses may teach that you should not gener-
ate a control chart with only 10 subgroups, which is 
intended to reduce the uncertainty of the standard 
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Day
Sample 

one
Sample 

two
Sample 
three

Sample 
four

Sample 
five

Mean Range

1 102.7 102.2 102.7 103.3 103.6 102.9 1.4

2 108.2 108.8 106.7 106.6 109.1 107.9 2.5

3 101.9 103.0 100.6 101.4 101.3 101.6 2.4

4 103.9 105.5 104.3 104.5 104.5 104.5 1.6

5 97.2 99.0 96.5 94.9 96.5 96.8 4.1

6 94.4 93.0 93.0 95.2 93.6 93.8 2.2

7 104.7 103.6 103.7 104.7 104.5 104.2 1.1

8 102.5 102.7 101.2 100.6 103.1 102.0 2.5

9 101.9 103.1 101.0 101.2 101.4 101.7 2.1

10 95.0 95.3 95.3 94.4 94.2 94.8 1.1

Average 101.0 2.1

Table 2. Time series data with multiple 
samples in daily subgroupings 

 and calculations for x– and R 
 control chart creation

Day Sample one Moving range

1 102.7  

2 108.2 5.5

3 101.9 6.3

4 103.9 2.0

5 97.2 6.7

6 94.4 2.8

7 104.7 10.3

8 102.5 2.2

9 101.9 0.6

10 95.0 6.9

Average 101.24 4.81

Table 3. Time series data of 
only the first sample 
from Table 2 

d = – m + 1ni ∑
i=1

m

LCL = x– – A2R
–

UCL = x– + A2R
–

LCL = x– – (MR) = x– –3
d2

3
1.128

(MR) = x– – 2.66(MR)

UCL = x– – + (MR) = x– +3
d2

3
1.128

(MR) = x– + 2.66(MR)

LCL =     – A2R
–
 = 101.044 – 0.577(2.1) = 99.83x–

UCL =    + A2R
–
 = 101.044 + 0.577(2.1) = 102.26x–

LCL = x– – 2.66(MR)= 0.86 - 2.66(0.46) = –0.36 .

UCL = x– + 2.66(MR)= 0.86 + 2.66(0.46) = 2.08

LCL = x– – 2.66(MR)= 101.04 - 2.66(4.96) = 87.85 .

UCL = x– + 2.66(MR)= 101.04 + 2.66(4.96) = 114.23

UCL = x– – 2.66(MR)= 101.24 - 2.66(4.81) = 114.03

LCL = x– + 2.66(MR)= 101.24 + 2.66(4.81) = 88.45

.

d = – m + 1ni ∑
i=1

m

LCL = x– – A2R
–

UCL = x– + A2R
–

LCL = x– – (MR) = x– –3
d2

3
1.128

(MR) = x– – 2.66(MR)

UCL = x– – + (MR) = x– +3
d2

3
1.128

(MR) = x– + 2.66(MR)

LCL =     – A2R
–
 = 101.044 – 0.577(2.1) = 99.83x–

UCL =    + A2R
–
 = 101.044 + 0.577(2.1) = 102.26x–

LCL = x– – 2.66(MR)= 0.86 - 2.66(0.46) = –0.36 .

UCL = x– + 2.66(MR)= 0.86 + 2.66(0.46) = 2.08

LCL = x– – 2.66(MR)= 101.04 - 2.66(4.96) = 87.85 .

UCL = x– + 2.66(MR)= 101.04 + 2.66(4.96) = 114.23

UCL = x– – 2.66(MR)= 101.24 - 2.66(4.81) = 114.03

LCL = x– + 2.66(MR)= 101.24 + 2.66(4.81) = 88.45

.

Day
Sample 

one
Sample 

two
Sample 
three

Sample 
four

Sample 
five

Mean
MR 

mean
Std. 
Dev.

MR 
Std. 
Dev.

1 102.7 102.2 102.7 103.3 103.6 102.9 0.55

2 108.2 108.8 106.7 106.6 109.1 107.9 4.98 1.17 0.62

3 101.9 103.0 100.6 101.4 101.3 101.6 6.24 0.89 0.28

4 103.9 105.5 104.3 104.5 104.5 104.5 2.90 0.59 0.30

5 97.2 99.0 96.5 94.9 96.5 96.8 7.72 1.48 0.89

6 94.4 93.0 93.0 95.2 93.6 93.8 2.98 0.95 0.53

7 104.7 103.6 103.7 104.7 104.5 104.2 10.40 0.55 0.41

8 102.5 102.7 101.2 100.6 103.1 102.0 2.22 1.07 0.52

9 101.9 103.1 101.0 101.2 101.4 101.7 0.30 0.84 0.23

10 95.0 95.3 95.3 94.4 94.2 94.8 6.88 0.51 0.33

Average 101.04 4.96 0.86 0.46

Table 4. Time series data with calculations for 
30,000-foot-level control chart creation

MR = moving range
Std. Dev. = standard deviation



deviation estimate, but having fewer than 25 subgroups 
or data points will only reduce the chance of detecting 
an out-of-control condition. Using a smaller number 
of data points in a control chart increases a beta-risk 
equivalent, in which a true out-of-control condition 
may not be detected. Smaller sample control charts 
that show an out-of-control condition should still be 
investigated because it is likely that an out-of-the-norm 
event occurred, given underlying assumptions used to 
create the chart.

Whenever a measurement on a control chart is 
beyond the UCL or LCL, the process is said to be out 
of control. Out-of-control conditions are considered 
special-cause conditions, and out-of- control conditions 
can trigger a causal problem investigation. 

As an alternative when creating a sampling plan, you 
might have selected only an individual sample instead 
of several samples for each subgroup. Imagine this is 
what happened for this same process and only the first 
measurement was observed for each of the 10 sub-
groups. Table 3 shows this set of data with the inclusion 
of some additional information for later determination 
of upper and lower control chart limits.  

For this set of data, you could create an individuals 
control chart or and individuals-moving-range chart 
(XmR). The moving range (MR) chart was not included 
for the sake of report-out simplicity because the MR 
portion of the XmR chart only provides additional 
visual information for large swings in adjacent individu-
als chart values, which could be visually observed in a 
stand-alone individuals chart. Calculations to deter-
mine the UCL and LCL are:

This individuals control chart shown in Figure 4 pro-
vides a different view than the x̄̄  and R control chart 

shown in Figure 3 relative to whether the process is 
experiencing special-cause conditions or not. The 
Figure 4 charting alternative is not unlike the creation 
of a 30,000-foot-level performance-tracking chart. 
Because the plotted values are within the control limits, 
we would conclude from a 30,000-foot-level perspective 
that only common-cause variability exists and the pro-
cess should be considered in control. The dramatic dif-
ference between the limits of these two control charts is 
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Figure 4. Individuals chart of sample 1 

Figure 5. 30,000-foot-level control chart of data in Table 4 
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caused by the two differing approaches to determining 
sampling standard deviation in the control charting 
equation shown previously; that is, the x̄̄  and R control 
chart equations do not take into account the variation 
between subgroups. 

Figure 4 illustrates one form of reporting, a 
30,000-foot-level performance tracking chart. Another 
approach is to consider each subgroup average and 
standard deviation as an individual random sample of 
the population mean and standard deviation. Using 
this approach, you can report out the subgroup aver-
age and standard deviation using an individuals chart 
for the creation of each plot. Table 4 (p. 26) shows the 
calculation of inputs to the UCLs and LCLs for the 
creation of these charts.  

Mean individuals control chart UCL and LCL cal-
culations:

Standard deviation control chart UCL and LCL 
calculations:

From this two-chart assessment of the process shown 
in Figure 5 (p. 27), you can conclude that this process 
is in control or stable, a different conclusion from the 
traditional x̄̄  and R control chart of this data shown 
in Figure 3.  

Upon examination, you can notice that the standard 
deviation individuals control chart has an LCL below 
zero. Because it is not physically possible to have a 
minus standard deviation, one of two things could be 
done to resolve this issue. One would be to move the 
LCL to zero. The other is to consider implementing a 
data transformation that makes physical sense.  

Because standard deviation has a lower bound of 
zero, a normal distribution may not adequately model 
standard deviation subgrouping values from track-
ing a process over time. The natural skewness of 

the lognormal distribution can be 
used to overcome these shortcom-
ings through tracking the log of 
the standard deviation values over 
time to determine whether within 
subgroup variability has changed 
over time. In this article, no adjust-
ments will be made to the standard 
deviation chart or the LCL.   

Process performance statements

Over time, a 30,000-foot-level indi-
viduals control chart could have 
several regions of stability. If there 
is a recent region of stability, a pro-
cess can be said to be predictable—
unless something changes, the same 
basic level of performance could be 
expected in the future. However, 
process stability does not mean that 
the process performance is satisfac-
tory relative to customer needs. To 
address whether the batch-to-batch 
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variability or other variability sources are causing a 
problem in a stable region of a 30,000-foot-level 
chart, the total variability of the process could then 
be compared to specification needs, as illustrated in 
Figure 6. 

For a stable process, the level of performance relative 
specification limits could be reported using process 
capability and performance Cp, Cpk, Pp and Ppk indexes, 
as shown in Figure 7. However, the interpretation of 

these indices can be confusing. A measurement that 
is easier to understand is the estimated area under 
the probability density curve beyond the specification 
range, which would be an estimate for the predicted 
nonconformance percentage. In Figure 7, this mea-
surement is presented as parts per million (PPM) 
total, but an alternative approach for presenting this 
information will be described later.  

If someone is using an x̄̄  and R control chart, as 
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shown in Figure 3, to assess process stability, no capabil-
ity and performance statement should be made until 
the process is brought into control, which could be 
difficult to accomplish because, in the real world, there 
might not be much that can be done to significantly 
reduce the variability between raw material lots, for 
example. However, because the 30,000-foot-level 
time-series-tracking assessment, as shown in Figure 5, 
considers people and material differences as a source 
for common-cause input variability, the process is con-
sidered stable, and this form of reporting could be 
used to describe how the process is performing rela-
tive to specification limits. The data for creating this 
process performance estimate is not to be bounded by 
any calendar considerations. Instead, shifts in process 
performance should lead to the staging of the control 
chart, noting that recent region of stability data and 
predictability statement could be three weeks, three 
months or three years of data.   

With 30,000-foot-level reporting, it would be under-
stood that if the process is not performing satisfactorily 
relative to this criterion, process improvement effort 
is needed to address the common-cause variability 
sources so that enhancements can be made in these 
areas of the system. 

In 30,000-foot-level reporting, an alternative 
approach to process capability and performance is used 
where a best estimate for percent beyond specification 
or in ppm defect rates is reported in lieu of process 
capability indexes, which can be confusing and depend 
on how data are sampled from the process.  

With 30,000-foot-level reporting of continuous data, 
a probability plot can provide a visual representation 
of how well the data are performing relative to speci-

fication limits. With this form of reporting, you can 
also determine whether other adjustments or inves-
tigations are needed relative to outlier data points 
or multi-modal distributions. Results of this form of 
reporting provide a similar result to a traditional pro-
cess capability and performance analysis in the area of 
expected overall performance. Figure 8 (p. 29) illus-
trates this point in which PPM total from Part A of the 
figure when converted to a percentage value of 26.8% 
is approximately equal to the calculated percentage 
beyond specification from the probability plot, or 8.452 
+ 100(100 - 81.599) = 26.853. 

One other point that should be highlighted is that 
this fabricated data actually consisted of two variance 
components, where one component was within-day 
and the other was between-day. Because of this, the 
data did not have as good a normal probability plot 
fit as you would like to see. However, even with this 
extreme fabricated data set, you could still achieve a 
basic understanding of how the process is perform-
ing—the process is stable with an expected percentage 
that is about 27% nonconformance.   

When no specification exists, as might be the case in 
transactional or service processes, the 30,000-foot-level 
process capability and performance estimate could be 
expressed as a median and percentage of occurrence, 
in which a probability plot is used determine these 
values, as illustrated in Figure 9 (p. 29). An example 
of this form of reporting is the process is predictable 
with an estimated median process order time of 30 days 
with 80% of orders being filled between 10 and 50 days. 

The basic approach for 30,000-foot-level reporting 
is:18 

1. Determine an infrequent subgrouping or sam-

30  I   F E B R U A R Y  2 0 1 4   I   W W W . A S Q . O R G

The process is predictable.
Estimated performance: 26.852% nonconformance rate.

M
ea

n

Day

X-chart of mean
UCL = 114.23

LCL = 87.86

x– = 101.04

1

90

96

102

108

114

2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d 
de

vi
at

io
n

Pe
rc

en
ta

ge

Day

X-chart of standard deviation

Probability plot
normal

UCL = 2.071

LCL = -0.351

x– = 0.860

1

1

10

50

99

90

90 95 100 105

9
5

1
0

5

110

0.0

0.6

1.2

1.8

2.4

2 3 4 5 6 7 8 9 10

8.452

81.599

       

Figure 10.  30,000-foot-level performance metric report-out of data in Table 4 
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Figure 11.  30,000-foot-level performance metric report-out  
when there is a specification 

Figure 12.  30,000-foot-level performance metric report-out  
when there is no specification 

pling plan so that the typical variability from pro-
cess input factors occurs between subgroups—
subgroup by day, week or month.

2. Analyze the process for predictability using an 
individuals control chart. 

3. When the process is considered predictable, 
formulate a prediction statement for the latest 
region of stability. The usual reporting format 
for this prediction statement is:

• When there is a specification requirement: non-

conformance percentage or defects per million 
opportunities (DPMO).

• When there are no specification requirements: 
median response and 80% frequency of occur-
rence rate.

This process for metric reporting would lead to a 
30,000-foot-level report-out format for the data in 
Table 2 to be that shown in Figure 10, where an easy-
to-understand prediction statement is included at the 
bottom of the process’s report-out.  
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Some could rightfully challenge that the data shown 
in Figure 10 are not normally distributed. People who 
take this position might conclude that a nonconfor-
mance estimate should not be made from the prob-
ability plot. A non-normality conclusion for this data 
set can’t be disagreed with, especially because, by the 
nature of this simulated example, there are two com-
ponents of variation—between and within subgroup 
variability. However, George Box19 noted that while 
all models may be wrong, some are useful. For this 
illustrative example, take Box’s position that this model 
is wrong but, visually, the straight line in the probability 
plot appears to provide a fair representation of the 
population from which the data were taken. Therefore, 
the estimate is useful.  

In general, other types of probability plots—such as 
a log-normal probability plot—may provide a better 
30,000-foot-level performance estimate than a normal 
probability plot. But take care that the selected prob-
ability plot makes physical sense. For example, data 
from a situation that has a lower bound of zero (for 
example, hold time in a call center) might better be 
represented by a log-normal probability plot than a 
normal probability plot. 

Figures 11 and 12 (p. 31) illustrate a 30,000-foot-level 
report out for the Sample 1 individual values data 
(Table 3), with and without a specification. 

If a process is not capable of meeting specifica-
tion needs, improvements could be implemented, 
such that the process’ 30,000-foot-level individuals 
control chart transitions to a new, improved level of 
performance. This may seem obvious; however, often 
organizational metric reporting does not encourage 
this form of thinking. When an organization reacts 
to the problems of the day or week, the group is not 
structurally assessing this form of problem solving. 
Typically, 30,000-foot-level metric reporting includes 
a measurement variability component, which could 
provide the largest opportunity for improving the high-
level reported performance, if something can be done 
to reduce the amount of variation caused by individual 
measurement reporting differences. 

A higher level

At the 30,000-foot level, control charts are used to 
examine processes from a high viewpoint, which is 
consistent with Deming’s philosophy. His statement 
that 94% of the troubles in a process belong to the 
system (common cause); only 6% are special cause 
suggests an individuals control chart might illustrate to 
management and others that past firefighting activities 
have been the result of common cause issues. Because 

most of these issues were not special-cause issues, this 
expensive approach to issue resolution had no lasting 
value. 

The 30,000-foot-level performance metric tracking 
approach does not view short-term typical process vari-
ability as special-cause excursion control chart issues 
but as noise to the overall process response. If the 
process is shown to be predictable and the process 
overall does not yield a desired response, there is a 
“pull” for project creation.  

Within the improvement projects, inputs and their 
levels are examined collectively over the process’s stable 
or predictable period of time to determine opportunities 
for process improvement. If an organization chose the 
process that produced the nonconformance rate shown 
in Figure 10 for targeting their improvement efforts, an 
analysis of the data in Table 2 would show that there is 
significantly more variability between days than within 
days. This insight could be helpful to determine what 
should be changed in the process so that the process’s 
30,000-foot-level chart is transitioned to a new, enhanced 
level of performance after the change was made.  
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